Problema 12

The sequence of triangle numbers is generated by adding the natural numbers. So the 7th triangle number would be 1 + 2 + 3 + 4 + 5 + 6 + 7 = 28. The first ten terms would be:
1, 3, 6, 10, 15, 21, 28, 36, 45, 55, ...
Let us list the factors of the first seven triangle numbers:
 1: 1
 3: 1,3
 6: 1,2,3,6
10: 1,2,5,10
15: 1,3,5,15
21: 1,3,7,21
28: 1,2,4,7,14,28
We can see that 28 is the first triangle number to have over five divisors.
What is the value of the first triangle number to have over five hundred divisors?
 
 
Solución:
 
/*
 * To change this license header, choose License Headers in Project Properties.
 * To change this template file, choose Tools | Templates
 * and open the template in the editor.
 */
package projecteuler;

/**
 *
 * @author lyonn
 */
public class C12 {

    int tmpCont;

    public void resultado() {

        int cont = 0;

        for (int i = 1; i <= 7000000; i++) {

            cont += i;
            for (int j = 1; j <= cont; j++) {
                int tmp = cont % j;

                if (tmp == 0) {
                    //System.err.println("Numero: "+cont+" divisor: "+j);
                    tmpCont++;
                    if (tmpCont > 500) {
                        System.err.println("El número es: " + cont);
                        System.exit(0);
                    }
                   
                }

            }

            //System.out.println(cont);
            tmpCont=0;
        }

    }

}
 

Comentarios

Entradas populares